Last updated: 2017-07-26
Code version: 26dff77
The practical estimation of \(\varepsilon\)-complexity uses some family of approximation methods \(\mathcal{F}\) to successively downsample and approximate a function. At each step \(h\), only some proportion of the initial samples, \(S_h\), are used finding the minimum approximation error, \(\varepsilon_h\). A least squares fit \[ \log(S) \approx A + B\log(\varepsilon) \] determines the two parameters, \(A\) and \(B\), which characterize the \(\varepsilon-\)complexity of the function.
foreach \(f\) in \(\mathcal{F}\) do
Compute the approximation error 
 \(\varepsilon_{h,f} \leftarrow \frac{1}{N}  \left|f_h - X_{h} \right|^2\) 
end 
 Find minimium error over all \(f\) 
 epsilons\(_h\) \(\leftarrow \min \varepsilon_{h,f}\).
end 
 Fit a least squares linear model 
 \(A,B\) \(\leftarrow\) lm\(\left(\{ S_h \} \sim \{ \varepsilon_h \} \right)\).