# Update knitr chunk options
# https://yihui.name/knitr/options/#chunk-options
knitr::opts_chunk$set(
cache = FALSE,
# dependencies
autodep = TRUE,
# Don't rerun if only comments changed
cache.comments = FALSE,
cache.lazy = TRUE,
echo = FALSE,
eval = TRUE,
comment = NA,
fig.align = "center",
tidy = TRUE,
fig.width = 8,
fig.height = 6,
out.width = "100%",
echo = TRUE,
warning = FALSE,
message = FALSE,
fig.align = "center",
fig.path = paste0("figure/", knitr::current_input(), "/")
)
Last updated: 2017-09-22
Code version: 37e505a
The last thing we’ll look at before presenting plots for the final model is the color distribution over each topic. This gives us a picture of what our color themes actually are!
library(dplyr)
library(purrr)
library(ggplot2)
Connecting to database
Assigning themes to theme_df
Assigning sets to sets_df
Retrieving dataset form db
Disconnecting from database
Assigning full set set inventories to 'set_colors'
knitr::read_chunk(here::here("code", "compare-models.R"))
For these plots the distribution is represented by a weighted relevance score (the same that is used in the [
LDAvis` package](http://www.kennyshirley.com/LDAvis/#topic=0&lambda=0.61&term=).
The beta \(\beta\) matrix, gives the posterior distribution of words given a topic, \(p(w|t)\). Relevance is computed \[ \text{relevance}(w|t) = \lambda \cdot p(w|t) + (1-\lambda)\cdot \frac{p(w|t)}{p(w)}. \]
library(dplyr)
library(ggplot2)
if (!exists("set_colors")) {
legolda::load_csv(sample_data = FALSE)
legolda::create_tables(sample_data = FALSE)
}
lda_models <- readRDS(here::here("inst", "data", "lda_models_all.RDS"))
set_topics <- lda_models %>% purrr::map(function(x) {
class(x) <- "LDA"
x
}) %>% purrr::map(tidytext::tidy, matrix = "gamma")
# Total frequency used in relevance score
word_freq <- set_colors %>% count(rgba) %>% mutate(percent = n/nrow(set_colors))
# Create palette
pal <- unique(set_colors$rgba)
names(pal) <- unique(pal)
# Plot weighted relevance of terms/colors for each topic
plot_relevance <- function(top_terms, bgcol) {
ntopics <- max(top_terms$topic)
subtitle <- paste0("Weighted color distribution for ", ntopics, " topics")
top_terms %>% ggplot(aes(x = -order, y = relevance, fill = term)) + labs(x = "",
y = "Color relevance to topic", title = "Lego color topics", subtitle = subtitle) +
geom_col(show.legend = FALSE) + facet_wrap(~topic, scales = "free",
nrow = 5) + scale_fill_manual(values = pal) + coord_flip() + theme_bar(bgcol) +
theme(axis.text.x = element_blank(), axis.text.y = element_blank(),
panel.grid.major.x = element_blank())
}
top_list <- lda_models %>% purrr::map(legolda::top_terms, lambda = 0.7, nterms = 7,
freq = word_freq)
bgcol = "#a8a4a2"
plot_relevance(top_list[[2]], bgcol) # 20 topics
plot_relevance(top_list[[3]], bgcol) # 40 topics
plot_relevance(top_list[[5]], bgcol) # 60 topics
## How many themes?
Even though our model scores might have leaned towards a model with fewere topics, we can see specific topics where adding more models separates themes that appear to be quite different. The firs two examples are of topic # 2 from the 30 topic model which seems more coherent in the 40 topic model (the sencond plot).
model_num <- 2
topic_num <- 2
library(waffle)
plot_topic <- set_topics[[model_num]] %>% dplyr::filter(topic == topic_num) %>%
dplyr::arrange(desc(gamma)) %>% head(20)
waffle_prep <- function(document, sets) {
document$set_num <- document$document
document %>% left_join(sets, by = "set_num") %>% select(set_num, name, theme,
year, rgba) %>% group_by(theme, name, set_num, year) %>% tidyr::nest() %>%
mutate(counts = purrr::map(data, table))
}
bgcol <- "#e8e4e2"
w1 <- waffle_prep(plot_topic[1, ], set_colors)
w2 <- waffle_prep(plot_topic[4, ], set_colors)
w3 <- waffle_prep(plot_topic[6, ], set_colors)
w4 <- waffle_prep(plot_topic[7, ], set_colors)
waffle::iron(waff(w1, size = 0.5, rows = 1, nchr = 20, bgcol = bgcol), waff(w2,
size = 2, rows = 1, nchr = 13, bgcol = bgcol), waff(w3, size = 0.2, rows = 2,
nchr = 20, bgcol = bgcol), waff(w4, size = 0.2, rows = 4, nchr = 20, bgcol = bgcol))
# Which sets are most associated with a topic
model_num <- 2
topic_num <- 2
view_topic <- set_topics[[model_num]] %>% filter(topic == topic_num) %>% arrange(desc(gamma)) %>%
head(50) %>% mutate(set_num = document, gamma = round(gamma, 2)) %>% left_join(sets_df,
by = "set_num") %>% mutate(set_name = stringr::str_sub(name, 1, 20)) %>%
select(topic, gamma, set_name, set_num, theme_id, year, num_parts) %>% left_join(theme_df,
by = c(theme_id = "id")) %>% mutate(theme_name = name) %>% select(topic,
gamma, set_name, set_num, theme_name, theme_id, year, num_parts)
knitr::kable(view_topic, caption = paste0("Sets most associated with topic",
topic_num))
topic | gamma | set_name | set_num | theme_name | theme_id | year | num_parts |
---|---|---|---|---|---|---|---|
2 | 0.83 | Mr. Magoriums big bo | 66208-1 | Basic Model | 23 | 2007 | 9 |
2 | 0.76 | Traffic Police Set | 1271-2 | Town Plan | 372 | 1956 | 6 |
2 | 0.76 | Traffic Police Set | 271-2 | Town Plan | 372 | 1958 | 6 |
2 | 0.73 | Supplementary Disks | 8508-1 | Throwbot Slizer | 20 | 1999 | 5 |
2 | 0.68 | Pneumatic Value Pack | 5110-1 | Technic | 453 | 1990 | 4 |
2 | 0.68 | Bangle Minis | 7501-1 | Clikits | 500 | 2003 | 32 |
2 | 0.62 | Trendy Tote Hot Pink | 7510-1 | Clikits | 500 | 2003 | 89 |
2 | 0.61 | Advent Calendar 2005 | 7574-18 | Clikits | 222 | 2005 | 8 |
2 | 0.56 | Pretty in Pink Jewel | 7533-1 | Clikits | 500 | 2005 | 66 |
2 | 0.56 | Trendy Tote Sky Blue | 7512-1 | Clikits | 500 | 2003 | 94 |
2 | 0.56 | Pearly Pink Bracelet | 7554-1 | Clikits | 500 | 2006 | 63 |
2 | 0.52 | Bricks and Creations | 4679-1 | Basic Set | 37 | 2004 | 2 |
2 | 0.52 | Bricks and Creations | 4679-2 | Basic Set | 37 | 2005 | 2 |
2 | 0.52 | LEGO Creative Value | 66311-1 | Basic Set | 37 | 2010 | 2 |
2 | 0.52 | Motorized Simple Mac | 9645-1 | Technic | 529 | 1997 | 2 |
2 | 0.52 | Racers Turbo Pack | 65062-1 | Drome Racers | 113 | 2002 | 2 |
2 | 0.52 | Vladek Value Pack | 65769-1 | Knights Kingdom II | 198 | 2005 | 4 |
2 | 0.52 | Advent Calendar 2005 | 7574-13 | Clikits | 222 | 2005 | 4 |
2 | 0.52 | Advent Calendar 2005 | 7574-17 | Clikits | 222 | 2005 | 4 |
2 | 0.51 | Sweet Dreamy Jewels | 7514-1 | Clikits | 500 | 2004 | 12 |
2 | 0.49 | Volkswagen Beetle (V | 10187-1 | Sculptures | 276 | 2008 | 1625 |
2 | 0.46 | Nitro Muscle | 8194-1 | Tiny Turbos | 120 | 2010 | 47 |
2 | 0.46 | Rip | 4574-1 | Xalax | 125 | 2001 | 7 |
2 | 0.46 | Galaxy Patrol - Comp | 8831-8 | Series 7 Minifigures | 542 | 2012 | 7 |
2 | 0.45 | Jewels-n-Rings | 7507-1 | Clikits | 500 | 2003 | 80 |
2 | 0.45 | Blooms & Butterflies | 7557-1 | Clikits | 500 | 2005 | 14 |
2 | 0.44 | Rebel A-wing Pilot | 5004408-1 | Star Wars Rebels | 182 | 2016 | 5 |
2 | 0.42 | Advent Calendar 2005 | 7574-19 | Clikits | 222 | 2005 | 9 |
2 | 0.42 | Interface Card and C | 9771-1 | Supplemental | 532 | 1989 | 3 |
2 | 0.42 | Tropical Breeze Jewe | 7546-1 | Clikits | 500 | 2006 | 73 |
2 | 0.41 | Advent Calendar 2004 | 7575-8 | Clikits | 222 | 2004 | 4 |
2 | 0.41 | Le Fleuriste Collect | lfv3-1 | Other | 301 | 2010 | 350 |
2 | 0.41 | Advent Calendar 2005 | 7574-5 | Clikits | 222 | 2005 | 8 |
2 | 0.40 | Friendship Frame / M | 7504-1 | Clikits | 500 | 2004 | 15 |
2 | 0.39 | Micro Mecha Horse | MYERNEXO-2 | Nexo Knights | 605 | 2016 | 24 |
2 | 0.39 | Pretty in Pink Beaut | 7527-1 | Clikits | 500 | 2005 | 136 |
2 | 0.37 | Captain America | 41589-1 | Brickheadz | 610 | 2017 | 79 |
2 | 0.36 | 12V Replacement Elec | 703-1 | 12V | 242 | 1969 | 1 |
2 | 0.36 | Advent Calendar 2011 | 7958-1 | Star Wars | 209 | 2011 | 25 |
2 | 0.36 | Adventurers Value Pa | 1024601-1 | Desert | 297 | 2001 | 3 |
2 | 0.36 | Click-N-Store Jewelr | 65542-1 | Clikits | 500 | 2004 | 2 |
2 | 0.36 | Color Sensor for Min | MS1038-1 | NXT | 259 | 2006 | 1 |
2 | 0.36 | Environment Plate | 359-1 | Supplemental | 473 | 1972 | 1 |
2 | 0.36 | Infrared Seeker for | 2852725-1 | NXT | 259 | 2011 | 1 |
2 | 0.36 | Jewels-n-Bands Click | 65363-1 | Clikits | 500 | 2004 | 2 |
2 | 0.36 | Jewels-n-Clips Click | 65364-1 | Clikits | 500 | 2004 | 2 |
2 | 0.36 | Jewels-n-Rings Click | 65362-1 | Clikits | 500 | 2004 | 2 |
2 | 0.36 | Knights’ Kingdom Adv | 50799-1 | Knights Kingdom II | 198 | 2005 | 3 |
2 | 0.36 | Knights’ Kingdom Val | kk2vp1-1 | Knights Kingdom II | 198 | 2004 | 3 |
2 | 0.36 | Knights’ Kingdom Val | kk2vp2-1 | Knights Kingdom II | 198 | 2004 | 3 |
saveRDS(view_topic, here::here("inst", "data", "view-topic-2-2.RDS"))
model_num <- 3
topic_num <- 2
library(waffle)
plot_topic <- set_topics[[model_num]] %>% dplyr::filter(topic == topic_num) %>%
dplyr::arrange(desc(gamma)) %>% head(20)
waffle_prep <- function(document, sets) {
document$set_num <- document$document
document %>% left_join(sets, by = "set_num") %>% select(set_num, name, theme,
year, rgba) %>% group_by(theme, name, set_num, year) %>% tidyr::nest() %>%
mutate(counts = purrr::map(data, table))
}
bgcol <- "#e8e4e2"
w1 <- waffle_prep(plot_topic[1, ], set_colors)
w2 <- waffle_prep(plot_topic[4, ], set_colors)
w3 <- waffle_prep(plot_topic[6, ], set_colors)
w4 <- waffle_prep(plot_topic[8, ], set_colors)
waffle::iron(waff(w1, size = 0.5, rows = 1, nchr = 20, bgcol = bgcol), waff(w2,
size = 2, rows = 4, nchr = 13, bgcol = bgcol), waff(w3, size = 0.2, rows = 3,
nchr = 20, bgcol = bgcol), waff(w4, size = 0.2, rows = 2, nchr = 20, bgcol = bgcol))
# Which sets are most associated with a topic
model_num <- 3
topic_num <- 2
view_topic <- set_topics[[model_num]] %>% filter(topic == topic_num) %>% arrange(desc(gamma)) %>%
head(50) %>% mutate(set_num = document, gamma = round(gamma, 2)) %>% left_join(sets_df,
by = "set_num") %>% mutate(set_name = stringr::str_sub(name, 1, 20)) %>%
select(topic, gamma, set_name, set_num, theme_id, year, num_parts) %>% left_join(theme_df,
by = c(theme_id = "id")) %>% mutate(theme_name = name) %>% select(topic,
gamma, set_name, set_num, theme_name, theme_id, year, num_parts)
knitr::kable(view_topic, caption = "Sets most associated with topic 37")
topic | gamma | set_name | set_num | theme_name | theme_id | year | num_parts |
---|---|---|---|---|---|---|---|
2 | 0.56 | Rip | 4574-1 | Xalax | 125 | 2001 | 7 |
2 | 0.51 | Volkswagen Beetle (V | 10187-1 | Sculptures | 276 | 2008 | 1625 |
2 | 0.50 | Gavla | 8948-1 | Matoran of Light | 333 | 2008 | 14 |
2 | 0.50 | Toa Gali | 8688-1 | Mistika | 338 | 2008 | 60 |
2 | 0.49 | Piraka | 7137-1 | Stars | 345 | 2010 | 15 |
2 | 0.46 | Nitro Muscle | 8194-1 | Tiny Turbos | 120 | 2010 | 47 |
2 | 0.46 | Galaxy Patrol - Comp | 8831-8 | Series 7 Minifigures | 542 | 2012 | 7 |
2 | 0.45 | Micro Mecha Horse | MYERNEXO-2 | Nexo Knights | 605 | 2016 | 24 |
2 | 0.44 | Dunkan Bulk | 7168-1 | Heroes | 401 | 2010 | 17 |
2 | 0.42 | Tarix | 8981-1 | Glatorian | 331 | 2009 | 57 |
2 | 0.41 | Le Fleuriste Collect | lfv3-1 | Other | 301 | 2010 | 350 |
2 | 0.39 | Captain America | 41589-1 | Brickheadz | 610 | 2017 | 79 |
2 | 0.38 | Vahki Bordakh | 8615-1 | Vahki | 357 | 2004 | 32 |
2 | 0.37 | Toa Mahri Hahli | 8914-1 | Toa Mahri | 352 | 2007 | 58 |
2 | 0.37 | Vahki Bordakh Limite | 8615-2 | Vahki | 357 | 2004 | 33 |
2 | 0.37 | Kendo Fighter | 71011-12 | Series 15 Minifigures | 554 | 2016 | 7 |
2 | 0.36 | Robin | NEX271714-1 | Nexo Knights | 605 | 2017 | 19 |
2 | 0.36 | Globert | 41533-1 | Series 4 | 584 | 2015 | 45 |
2 | 0.36 | Vamprah | 8692-1 | Phantoka | 339 | 2008 | 48 |
2 | 0.36 | Gelu | 8988-1 | Glatorian Legends | 332 | 2009 | 52 |
2 | 0.35 | Advent Calendar 2014 | 75056-7 | Star Wars | 225 | 2014 | 9 |
2 | 0.34 | ChromaStone | 8411-1 | Ben 10 | 270 | 2010 | 21 |
2 | 0.34 | Kiina | 8987-1 | Glatorian Legends | 332 | 2009 | 43 |
2 | 0.33 | Advent Calendar 2008 | 7979-4 | Castle | 219 | 2008 | 8 |
2 | 0.32 | Hockey Player - Comp | 8804-8 | Series 4 Minifigures | 539 | 2011 | 11 |
2 | 0.32 | Vezok | 8902-1 | Piraka | 340 | 2006 | 41 |
2 | 0.31 | Advent Calendar 2008 | 7979-2 | Castle | 219 | 2008 | 5 |
2 | 0.31 | Toa Nokama | 8602-1 | Toa Metru | 353 | 2004 | 46 |
2 | 0.31 | Visorak Battle Ram | 8757-1 | Playsets | 341 | 2005 | 190 |
2 | 0.31 | Advent Calendar 2010 | 7952-14 | Castle | 219 | 2010 | 5 |
2 | 0.31 | MTT | 30059-1 | Star Wars | 158 | 2012 | 51 |
2 | 0.31 | Spidermonkey | 8409-1 | Ben 10 | 270 | 2010 | 21 |
2 | 0.30 | Loki’s Cosmic Cube E | 6867-1 | Avengers | 487 | 2012 | 180 |
2 | 0.30 | Combo NEXO Powers Wa | 70372-1 | Nexo Knights | 605 | 2017 | 5 |
2 | 0.30 | Toa Tahu | 8689-1 | Mistika | 338 | 2008 | 73 |
2 | 0.30 | Rahaga Gaaki | 4868-1 | Rahaga | 342 | 2005 | 28 |
2 | 0.29 | Vulture Droid foil p | SW911723-1 | Star Wars Episode 3 | 162 | 2017 | 35 |
2 | 0.29 | Inika Toa Hahli | 8728-1 | Toa Inika | 351 | 2006 | 46 |
2 | 0.29 | Joachim Löw | 71014-1 | DFB Minifigures | 557 | 2016 | 6 |
2 | 0.29 | Jor-El | 5001623-1 | Superman | 489 | 2013 | 5 |
2 | 0.29 | Police Patrol | 4963-1 | Duplo | 504 | 2006 | 5 |
2 | 0.29 | Boogly | 41535-1 | Series 4 | 584 | 2015 | 52 |
2 | 0.29 | Lava Chamber Gate | 8893-1 | Playsets | 341 | 2006 | 375 |
2 | 0.29 | Starblaster Showdown | 76019-1 | Guardians of the Galaxy | 483 | 2014 | 195 |
2 | 0.29 | Dalu | 8726-1 | Matoran of Voya Nui | 337 | 2006 | 25 |
2 | 0.28 | Sir Jayko | 8792-1 | Knights Kingdom II | 198 | 2005 | 42 |
2 | 0.28 | Duplo Airport Rescue | 7844-1 | Duplo | 504 | 2004 | 28 |
2 | 0.28 | Vampos | 41534-1 | Series 4 | 584 | 2015 | 59 |
2 | 0.28 | Sir Adric | 8704-1 | Knights Kingdom II | 198 | 2006 | 40 |
2 | 0.28 | Inika Toa Hewkii | 8730-1 | Toa Inika | 351 | 2006 | 62 |
saveRDS(view_topic, here::here("inst", "data", "view-topic-3-2.RDS"))
One final plot from topic 32 that I looked questionable but seems to have grouped some related (if small) sets.
# Which sets are most associated with a topic
model_num <- 3
topic_num <- 32
plot_topic <- set_topics[[model_num]] %>% dplyr::filter(topic == topic_num) %>%
dplyr::arrange(desc(gamma)) %>% head(10)
# plot_topic
waffle_prep <- function(document, sets) {
document$set_num <- document$document
document %>% left_join(sets, by = "set_num") %>% select(set_num, name, theme,
year, rgba) %>% group_by(theme, name, set_num, year) %>% tidyr::nest() %>%
mutate(counts = purrr::map(data, table))
}
w1 <- waffle_prep(plot_topic[1, ], set_colors)
w2 <- waffle_prep(plot_topic[4, ], set_colors)
w3 <- waffle_prep(plot_topic[6, ], set_colors)
w4 <- waffle_prep(plot_topic[7, ], set_colors)
waffle::iron(waff(w1, size = 0.5, rows = 1, nchr = 20, bgcol = bgcol), waff(w2,
size = 0.5, rows = 4, nchr = 18, bgcol = bgcol), waff(w3, size = 0.5, rows = 1,
nchr = 19, bgcol = bgcol), waff(w4, size = 0.5, rows = 4, nchr = 20, bgcol = bgcol))
model_num <- 3
topic_num <- 32
view_topic <- set_topics[[model_num]] %>% filter(topic == topic_num) %>% arrange(desc(gamma)) %>%
head(50) %>% mutate(set_num = document, gamma = round(gamma, 2)) %>% left_join(sets_df,
by = "set_num") %>% mutate(set_name = stringr::str_sub(name, 1, 20)) %>%
select(topic, gamma, set_name, set_num, theme_id, year, num_parts) %>% left_join(theme_df,
by = c(theme_id = "id")) %>% mutate(theme_name = name) %>% select(topic,
gamma, set_name, set_num, theme_name, theme_id, year, num_parts)
saveRDS(view_topic, here::here("inst", "data", "view-topic-32-3.RDS"))
knitr::kable(view_topic, caption = paste0("Sets most associated with topic ",
topic_num))
topic | gamma | set_name | set_num | theme_name | theme_id | year | num_parts |
---|---|---|---|---|---|---|---|
32 | 0.77 | Advent Calendar 2007 | 7907-19 | City | 220 | 2007 | 9 |
32 | 0.60 | Advent Calendar 2008 | 7979-16 | Castle | 219 | 2008 | 9 |
32 | 0.57 | Advent Calendar 2009 | 7687-10 | City | 220 | 2009 | 7 |
32 | 0.56 | Small Plates, Disks | 5198-1 | Service Packs | 443 | 1989 | 56 |
32 | 0.55 | Light Prisms & Holde | 1147-1 | Train | 456 | 1981 | 7 |
32 | 0.55 | Light Transmitting E | 5073-1 | Train | 456 | 1987 | 7 |
32 | 0.52 | LEGO Heart (Legoland | llca8-1 | Legoland Parks | 425 | 2004 | 58 |
32 | 0.50 | Kanoka Launcher And | 3259-1 | Supplemental | 346 | 2004 | 2 |
32 | 0.48 | Advent Calendar 2014 | 60063-14 | City | 220 | 2014 | 8 |
32 | 0.46 | Surface Hopper | 6806-1 | Classic Space | 130 | 1985 | 23 |
32 | 0.46 | Space Light and Rada | 5042-1 | Space | 452 | 1991 | 50 |
32 | 0.46 | Small Plates with To | 5053-1 | Service Packs | 443 | 1993 | 76 |
32 | 0.45 | Advent Calendar 2006 | 7904-11 | City | 220 | 2006 | 6 |
32 | 0.45 | Advent Calendar 2005 | 7324-13 | City | 220 | 2005 | 6 |
32 | 0.44 | Transparent Bricks | 16-1 | Service Packs | 443 | 1988 | 32 |
32 | 0.44 | Muji Christmas Set | 8465934-1 | Other | 301 | 2009 | 120 |
32 | 0.44 | Light and Transparen | 9866-1 | Technic | 1 | 1992 | 12 |
32 | 0.44 | Light Bricks (4.5V) | 1344-1 | Service Packs | 524 | 1986 | 12 |
32 | 0.44 | Advent Calendar 2009 | 6299-3 | Pirates | 224 | 2009 | 9 |
32 | 0.41 | Advent Calendar 1998 | 1298-4 | Classic Basic | 221 | 1998 | 9 |
32 | 0.41 | Holiday Ornament wit | 853344-1 | Christmas | 227 | 2011 | 32 |
32 | 0.41 | Advent Calendar 2005 | 7324-15 | City | 220 | 2005 | 11 |
32 | 0.41 | Monthly Mini Model B | 40040-1 | Monthly Mini Model Build | 409 | 2012 | 15 |
32 | 0.41 | Transparent Bricks | 5156-1 | Service Packs | 443 | 1991 | 17 |
32 | 0.41 | Wizard | 7955-1 | Kingdoms | 196 | 2010 | 19 |
32 | 0.41 | Advent Calendar 2013 | 60024-13 | City | 220 | 2013 | 21 |
32 | 0.40 | Darth Maul | 5000062-1 | Minifig Pack | 178 | 2012 | 3 |
32 | 0.40 | Advent Calendar 2010 | 7952-10 | Castle | 219 | 2010 | 5 |
32 | 0.40 | Holiday Ornament wit | 853346-1 | Christmas | 227 | 2011 | 38 |
32 | 0.40 | Ring of Fire | 70100-1 | Speedorz | 572 | 2013 | 78 |
32 | 0.39 | MUJI Christmas Set | e1a1404-1 | Other | 301 | 2011 | 120 |
32 | 0.39 | Advent Calendar 2004 | 4924-24 | Creator | 223 | 2004 | 12 |
32 | 0.39 | Advent Calendar 1998 | 1298-13 | Classic Basic | 221 | 1998 | 12 |
32 | 0.37 | The Collector - San | comcon035-1 | Guardians of the Galaxy | 483 | 2014 | 8 |
32 | 0.36 | Glider | 5966-1 | Exo-Force | 389 | 2006 | 22 |
32 | 0.36 | Ultimate Macy | 70331-1 | Nexo Knights | 605 | 2016 | 101 |
32 | 0.36 | Advent Calendar 2007 | 7600-20 | Belville | 218 | 2007 | 10 |
32 | 0.36 | Monthly Mini Model B | 40039-1 | Monthly Mini Model Build | 409 | 2012 | 16 |
32 | 0.36 | Color Light | 4056-1 | Studios | 273 | 2001 | 13 |
32 | 0.36 | Cosmic Comet | 6825-1 | Classic Space | 130 | 1985 | 40 |
32 | 0.36 | Transparent Plates, | 5128-1 | Service Packs | 443 | 1996 | 80 |
32 | 0.34 | Advent Calendar 2002 | 4524-21 | Creator | 223 | 2002 | 10 |
32 | 0.34 | Advent Calendar 2007 | 7600-25 | Belville | 218 | 2007 | 9 |
32 | 0.33 | Gray Space Elements | 13-1 | Space | 452 | 1981 | 10 |
32 | 0.33 | Lighting Set Electri | 7861-1 | 12V | 242 | 1980 | 28 |
32 | 0.33 | Advent Calendar 2002 | 4524-15 | Creator | 223 | 2002 | 11 |
32 | 0.32 | Chopper Cop | 6324-1 | Police | 100 | 1998 | 24 |
32 | 0.32 | Sabah Promotional Se | 1778-1 | Basic Model | 468 | 1997 | 9 |
32 | 0.32 | Advent Calendar 2011 | 7553-7 | City | 220 | 2011 | 18 |
32 | 0.32 | Advent Calendar 2000 | 2250-2 | Advent Sub-Set | 217 | 2000 | 12 |